Sign-changing blow-up solutions for Hénon type elliptic equations with exponential nonlinearity

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple Solutions for Semilinear Elliptic Equations with Sign-changing Potential and Nonlinearity

In this article, we study the multiplicity of solutions for the semilinear elliptic equation −∆u + a(x)u = f(x, u), x ∈ Ω, u = 0, x ∈ ∂Ω, where Ω ⊂ RN (N ≥ 3), the potential a(x) satisfies suitable integrability conditions, and the primitive of the nonlinearity f is of super-quadratic growth near infinity and is allowed to change sign. Our super-quadratic conditions are weaker the usual super-q...

متن کامل

Sign-changing Blow-up Solutions for Yamabe Problem

Let (M, g) be a smooth compact Riemannian manifold of dimension n ≥ 3. We are concerned with the following elliptic problem ∆gu+ hu = |u| 4 n−2−εu, in M, where ∆g = −divg(∇) is the Laplace-Beltrami operator on M , h is a C1 function on M , ε is a small real parameter such that ε goes to 0.

متن کامل

Boundary blow up solutions for fractional elliptic equations

In this article we study existence of boundary blow up solutions for some fractional elliptic equations including (−∆)u+ u = f in Ω, u = g on Ω, lim x∈Ω,x→∂Ω u(x) = ∞, where Ω is a bounded domain of class C2, α ∈ (0, 1) and the functions f : Ω → R and g : RN \ Ω̄ → R are continuous. We obtain existence of a solution u when the boundary value g blows up at the boundary and we get explosion rate f...

متن کامل

Global Existence, Exponential Decay and Blow-Up of Solutions for a Class of Fractional Pseudo-Parabolic Equations with Logarithmic Nonlinearity

In this paper, we study the fractional pseudo-parabolic equations ut +(−4) u+(−4) ut = u log |u|. Firstly, we recall the relationship between the fractional Laplace operator (−4) and the fractional Sobolev space H and discuss the invariant sets and the vacuum isolating behavior of solutions with the help of a family of potential wells. Then, we derive a threshold result of existence of global w...

متن کامل

Blow - up Solutions for Gkdv Equations with K Blow

In this paper we consider the slightly L-supercritical gKdV equations ∂tu + (uxx + u|u|)x = 0, with the nonlinearity 5 < p < 5 + ε and 0 < ε ≪ 1 . In the previous paper [10] we know that there exists an stable selfsimilar blow-up dynamics for slightly L-supercritical gKdV equations. Such solution can be viewed as solutions with single blow-up point. In this paper we will prove the existence of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2015

ISSN: 0022-1236

DOI: 10.1016/j.jfa.2015.02.009